Торможение реликтовым излучением

5 января 2014 года, 14:00

На втором курсе за неделю перед досрочным экзаменом по теоретической физике Семен Соломонович Герштейн задал мне две задачи. В одной требовалось найти угловое распределение синхротронного излучения электрона, движущегося по окружности. Вторая оказалась интереснее: найти силу торможения со стороны реликтового излучения на площадку, движущуюся перпендикулярно самой себе. Остановимся на ней подробнее. Записей с тех времен у меня не сохранилось, а в литературе опубликованы противоречивые результаты. Хороший повод заново разобраться в задаче.

Обозначения и соглашения

Под реликтовым излучением мы подразумеваем равновесное тепловое излучение при некоторой температуре T. Напомним, что плотность энергии и давление равновесного излучения определяются температурой: ε = 4πσT4/c, P = ε/3.

В системе отсчета, связанной с реликтовым излучением, оно однородно и изотропно. Относящиеся к ней величины будем обозначать символами без штрихов. Относительно этой системы со скоростью v движется площадка (например, диск) с коэффициентом отражения R. Штрихами обозначим величины в сопутствующей системе отсчета (связанной с площадкой).

Будем опускать скорость света c в тех формулах, где она легко восстанавливается из соображений размерности.

Обзор литературы

В публикациях по этой проблеме нет консенсуса. Например, в письме Андрея Шепелева в УФН под названием «Космический микроволновой фон и аристотелевы представления о движении» приведена формула для давления на площадку $$P=-v\,(1+v^2/2)\,\varepsilon/2$$. Этот ответ, как мы увидим ниже, явно ошибочен. Автор не раскрывает вычислений, поэтому невозможно понять, где ошибка.

В работе Баласаняна и Мкртчяна «Blackbody radiation drag on a relativistically moving mirror» вычисляется плотность импульса в системе отсчета, связанной с диском, и она отождествляется с давлением (с точностью до учета отражения). По поводу этой работы у меня есть два замечания. Во-первых, для вычисления плотности импульса авторы предлагают непростой путь. Они интегрируют импульс фотона $$\vec{k}'$$ по импульсному пространству c функцией распределения

$$n'(\vec{k}')={1\over e^{\gamma(\omega' +k'_xv)/T}-1}.$$(1)

В то же время плотность импульса электромагнитного излучения отличается на множитель 1/c2 от вектора Поинтинга, проекции которого есть компоненты T0i тензора энергии-импульса. Записав преобразование Лоренца для компоненты T01 тензора

$$T^{\mu\nu}=\begin{pmatrix}\varepsilon &0&0&0\\0&\varepsilon/3&0&0\\0&0&\varepsilon/3&0\\0&0&0&\varepsilon/3\end{pmatrix},$$

сразу получаем плотность импульса (см. II том Ландау и Лифшица, §35, формула 35.3)

$$S'_x=-{4\over 3}\,\varepsilon\,{v\over 1-v^2}.$$(2)

Во-вторых, неправильно отождествлять проекцию импульса электромагнитной волны, падающей на площадку под углом θ к нормали, с давлением, потому что сама площадка находится под углом, и ее эффективная площадь уменьшается. Из-за дополнительного фактора |cos θ|, появляющегося под интегралом (см. ниже), формула (2) не является правильным ответом, и использовать ее вообще нельзя.

Вычисление в сопутствующей системе отсчета

$$\usetikzlibrary{decorations.pathmorphing} \begin{tikzpicture}[line width=0.2mm,scale=1.0545]\small \tikzset{>=stealth} \tikzset{snake it/.style={->,semithick, decoration={snake,amplitude=.3mm,segment length=2.5mm,post length=0.9mm},decorate}} \def\h{3} \def\d{0.2} \def\ww{1.4} \def\w{1+\ww} \def\p{1.5} \def\r{0.7} \coordinate[label=below:$A$] (A2) at (\w,\p); \coordinate[label=above:$B$] (B2) at (\w,\p+\h); \coordinate[label=left:$C$] (C1) at (0,0); \coordinate[label=left:$D$] (D) at (0,\h); \draw[fill=blue!14](A2)--node[left]{$S$}(B2)-- ++(\d,0)-- ++(0,-\h)--cycle; \draw[gray,thin](C1)-- +(\w+\d,0); \draw[dashed,line width=0.2mm](C1)--(D); \draw[snake it](C1)--(A2) node[pos=0.5,above,inner sep=8] {$c\Delta t$}; \draw[snake it](D)--(B2); \draw[thin](\r,0) arc (0:atan2(\p,\w):\r) node[midway,right,yshift=0.06cm] {$\theta$}; \draw[opacity=0](-0.40,-0.14)-- ++(0,5.06); \end{tikzpicture}$$Давление как силу на единицу поверхности определим через импульс, передаваемый диску при отражении или поглощении фотонов за единицу времени:

$$P={F\over S}={1\over S}{\hbar\Delta k\over\Delta t}.$$

Если фотоны летят под углом θ к нормали, то за время Δt до неподвижной площадки S долетят фотоны из объема S cΔ|cos θ|. Из них доля R отразится и доля (1−R) поглотится. Каждый поглощенный фотон отдаст импульс $$\hbar k\cos\theta=\hbar\omega\cos\theta/c$$, а каждый отраженный — в два раза больше. Собирая всё вместе, получаем в сопутствующей системе отсчета

$$P=\int{\hbar\omega'\cos\theta'\over S\,c\Delta t'}\,(1+R)\,S\,c\Delta t'\,|\cos\theta'|\,n'(\vec{k}')\,d^3k'.$$

Напомним, что частота ω и волновой вектор $$\vec{k}$$ образуют четырехвектор $$(\omega, \vec{k})$$. Переход к движущейся системе координат осуществляется преобразованиями Лоренца

$$\omega'={\omega-k_xv\over\sqrt{1-v^2}},\qquad k_x'={k_x-\omega v\over\sqrt{1-v^2}}.$$

Функция распределения $$n(\vec{k})$$ в фазовом пространстве инвариантна относительно преобразований Лоренца, так как и элемент фазового объема $$d^3r\,d^3k$$, и число частиц $$dN=n(\vec{r},\vec{k})\,d^3r\,d^3k$$ есть инварианты (подробнее см. II том Ландау и Лифшица, §10). Именно поэтому функция распределения в движущейся системе $$n'(\vec{k'})=n(\vec{k})$$ есть обычное распределение Бозе — Эйнштейна (1), в которое подставлена преобразованная частота.

В итоге давление определяется следующим интегралом

$$P=\int \hbar\omega'\cos\theta'\,(1+R)\,|\cos\theta'|\,{const\over exp\left(\dfrac{\hbar\omega'}{kT}\,\dfrac{1+v\cos\theta'}{\sqrt{1-v^2}}\right)-1}\,\omega'^2\,d\omega'\,{d(\cos\theta')\over 2}.$$(3)

Вместо того чтобы следить за комбинацией констант, которая в итоге должна свестись к постоянной Стефана-Больцмана σ, мы примем условие нормировки в выражении для плотности энергии с той же самой константой:

$$\varepsilon=\int \hbar\omega\,{const\over exp\left(\dfrac{\hbar\omega}{kT}\right)-1}\,\omega^2\,d\omega={4\pi\sigma\over c}T^4.$$

Еще отсюда видно, что (3) можно упростить, проинтегрировав по частотам. Множитель $${\sqrt{1-v^2}}/{(1+v\cos\theta')}$$ перед температурой в экспоненте появится под интегралом в четвертой степени. Дальнейшее вычисление тривиально:

$$P=\varepsilon\,(1+R)\int\limits_{-1}^{1}\cos\theta'\,|\cos\theta'|\,\dfrac{(1-v^2)^2}{(1+v\cos\theta')^4}\,{d(\cos\theta')\over 2},$$

$${\Large\boxed{P=-\varepsilon\,(1+R)\,\frac{v\,(1+v^2/3)}{1-v^2}}.}$$(4)

Чтобы убедиться в правильности результата, вычислим тем же методом давление фотонного газа на одну сторону покоящейся пластины. Зависящий от скорости подынтегральный множитель исчезает, а интеграл в пределах от 0 до 1 равен 1/3. Полное давление есть (1+Rε/6. Если пластина всё отражает и ничего не поглощает, давление совпадает с ожидаемой величиной ε/3. Если пластина всё поглощает, давление равно ε/6 и составляет половину от давления фотонного газа ε/3. Вторая половина набегает за счет собственного излучения пластины, которое мы в наших расчетах не учитывали.

Формула (4) не совпадает ни с результатом Шепелева, который утверждает, что ответ сложен, и раскладывает его в ряд, ни с результатом Баласаняна, который ошибочно отождествляет в этой задаче плотность импульса и давление.

Вычисление в неподвижной системе отсчета

$$\usetikzlibrary{decorations.pathmorphing} \begin{tikzpicture}[line width=0.2mm,scale=1.0545]\small \tikzset{>=stealth} \tikzset{snake it/.style={->,semithick, decoration={snake,amplitude=.3mm,segment length=2.5mm,post length=0.9mm},decorate}} \def\h{3} \def\d{0.2} \def\ww{1.4} \def\w{1+\ww} \def\p{1.5} \def\r{0.7} \coordinate[label=below:$A_1$] (A1) at (\ww,\p); \coordinate[label=above:$B_1$] (B1) at (\ww,\p+\h); \coordinate[label=below:$A_2$] (A2) at (\w,\p); \coordinate[label=above:$B_2$] (B2) at (\w,\p+\h); \coordinate[label=left:$C$] (C1) at (0,0); \coordinate[label=left:$D$] (D) at (0,\h); \draw[fill=blue!14](A2)--(B2)-- ++(\d,0)-- ++(0,-\h)--cycle; \draw[gray,thin](C1)-- +(\w+\d,0); \draw[dashed,gray,fill=blue!5](A1)-- (B1)-- ++(\d,0)-- ++(0,-\h)-- cycle; \draw[dashed,line width=0.14mm](A1)--(C1)--(D)--(B1); \draw[snake it](C1)--(A2) node[pos=0.6,below] {$c\Delta t$}; \draw[->,semithick](\ww,\p+0.44*\h)-- +(\w-\ww,0) node[pos=0.6,above] {$v\Delta t$}; \draw[snake it](D)--(B2); \draw[thin](\r,0) arc (0:atan2(\p,\w):\r) node[midway,right,yshift=0.06cm] {$\theta$}; \draw[opacity=0](-0.40,-0.14)-- ++(0,5.06); \end{tikzpicture}$$ Тот же результат получается и в неподвижной системе отсчета. В ней не нужно иметь дела с функцией распределения фотонов, однако из-за движения площадки геометрические выкладки сложнее.

Чтобы понять, сколько летящих под углом θ фотонов с частотой ω попадет за время Δt на площадку AB, нужно ввести понятие «заметаемого объема» (объем, фотоны из которого попадут на диск) и умножить его величину на плотность фотонов nω. За это время площадка переместится из положения A1B1 в положение A2B2, а фотоны из точек C и D долетят до диска. Таким образом, заметаемый объем соответствует фигуре A1B1DС, и его величина равна |cΔcos θ − vΔt|.

При отражении фотона от площадки в сопутствующей системе отсчета знак проекции волнового вектора фотона изменяется на противоположный: $$k'_{2x}=-k'_{1x}$$. Найдем соответствующее изменение в неподвижной системе:

$$\begin{aligned}\Delta k &=k_{1x}-k_{2x}=k_{1x}-\gamma(k'_{2x}+\omega'_2v)=k_{1x}+\gamma(k'_{1x}-\omega'_1v)=\\&=k_{1x}+\gamma\left(\gamma(k_{1x}-\omega_1 v)-\gamma(\omega_1-k_{1x}v)v\right)=k_{1x}+\gamma^2\left(k_{1x}(1+v^2)-2v\omega\right).\end{aligned*}$$

Выражая проекцию волнового вектора через частоту фотона и азимутальный угол $$k_x=\omega\cos\theta$$, получаем

$$\Delta k=\omega\left[\cos\theta\left(1+{1+v^2\over 1-v^2}\right)-2{v\over 1-v^2}\right]={2\omega\over 1-v^2}\,(\cos\theta-v).$$

Ясно, что двойку в последнем выражении нужно заменить на (1+R), чтобы учесть случай произвольного коэффициента отражения R. Давление

$$P_\omega=\int{\hbar\omega\over S\,c\Delta t}\,{1+R\over 1-v^2}\,(\cos\theta-v)\,S|c\Delta t\cos\theta-v\Delta t|\,n_\omega\,{d(\cos\theta)\over2},$$

$$P_\omega={n_\omega\over 2}\hbar\omega\,{1+R\over 1-v^2}\int\limits_{-1}^{1}dx\,(x-v)|x-v|.$$

После вычисления интеграла и усреднения плотности энергии $$n_\omega\hbar\omega$$ по частотам получается формула (4).

Ключевые слова: электродинамика, равновесное излучение | Комментарии (14)

Круговая трактриса

29 января 2014 года, 11:52

Я люблю задачки, в которых нужно искать траектории частиц или уравнения необычных линий. К сожалению, они не всегда решаются аналитически. Разберем задачу, у которой аналитическое решение существует.

Задача

По окружности небольшого радиуса едет трактор. К нему на жестком стержне прикреплен груз (например, прицеп). По какой траектории будет двигаться груз?

При движении трактора по прямой траектория груза известна — это трактриса. В нашем случае движение будет более сложным. Я сделал анимацию искомой траектории — круговой трактрисы. Посмотрите на эту красоту.

Решение

Будем считать трактор точкой, движущейся по окружности радиуса r, и обозначать на рисунках зеленым кружком. К нему с помощью стержня длины L прикреплен груз (красный кружок).

Из кинематических связей координаты груза определяются формулами

$$x=r\cos\varphi+L\cos\theta,\quad y=r\sin\varphi+L\sin\theta.$$

Еще одна кинематическая связь дает ограничение на скорость груза. По условию вектор скорости всегда направлен на трактор. Поэтому угол θ в прямоугольном треугольнике совпадает с точностью до знака с углом наклона касательной:

$${dy\over dx}=\text{tg\,}\theta.$$

Мы выразим θ через φ и получим уравнение траектории в параметрической форме. Введем новый параметр β = L/r, возьмем дифференциалы первых двух уравнений и подставим в последнее:

$$-{\cos\varphi\,d\varphi+\beta\cos\theta\,d\theta\over \sin\varphi\,d\varphi+\beta\sin\theta\,d\theta}=\text{tg\,}\theta.$$

Приведя к общему знаменателю и воспользовавшись основным тригонометрическим тождеством и формулой косинуса разности, получаем дифференциальное уравнение

$$\beta{d\theta\over d\varphi}+\cos(\theta-\varphi)=0.$$

Оно решается разделением переменных после замены θ = α + φ. Решение имеет разный вид в зависимости от параметра β:

$$\theta(\varphi)=\left\{\begin{array}{l}\varphi-2\,\text{arctg}\left[\sqrt{\dfrac{\beta+1}{\beta-1}}\,\text{tg}\left(\varphi\,\dfrac{\sqrt{\beta^2-1}}{2\beta}\right)\right],\quad\beta>1,\\\vphantom{\dfrac{1}{1}}\varphi-2\,\text{arctg}\,\varphi,\quad\beta=1,\\\varphi-2\,\text{arctg}\left[\sqrt{\dfrac{1+\beta}{1-\beta}}\,\text{th}\left(\varphi\,\dfrac{\sqrt{1-\beta^2}}{2\beta}\right)\right],\quad\beta<1.\end{array}\right.$$

Анализ решения

Если β < 1, движение непериодическое. Груз следует за трактором, асимпотически приближаясь к окружности. Интересный режим возникает при β = 1. Тогда груз неограниченно приближается к центру окружности:

Если β > 1, движение будет периодическим по звездообразной траектории:

Чтобы найти угол между направлениями на соседние максимум и минимум, заметим, что груз находится дальше всего от центра, когда θ и φ совпадают, и ближе всего к центру, когда отличаются на π. В первом случае тангенс равен нулю, во втором — расходится. Возьмем направление на максимум θ = φ = 0 и направление на первый минимум φ = θ + π, определяющийся условием

$$(\pi+\theta)\,{\sqrt{\beta^2-1}\over 2\beta}={\pi\over 2}.$$

Угол между направлениями составляет

$$\theta=\pi\left({\beta\over\sqrt{\beta^2-1}}-1\right).$$

Если параметр удовлетворяет условию

$${1\over N}={\beta\over\sqrt{\beta^2-1}}-1,$$

то груз описывает замкнутую линию — N-конечную звезду. Вот пример для $$N=5,\beta=6/\sqrt{11}$$:

Ключевые слова: кинематика | Оставить комментарий

← сюда туда →