Простейшая модель электрона: электромагнитная масса и гиромагнитное отношение

16 марта 2011 года, 16:53

Продолжим развлекаться с классической электродинамикой. В прошлый раз мы подсчитали момент импульса в системе, состоящей из магнитного момента (маленькой катушки) в центре большой равномерно заряженной сферы

$$\vec{L}={2\over 3}{Q\vec{\mathfrak{m}}\over ca}.$$(1)

Но магнитное поле вокруг сферы можно создать без дополнительной катушки, просто закрутив ее. Получается, что часть момента импульса вращающейся сферы запасается в ее электромагнитном поле. Определим эту добавку.

Магнитный момент вращающейся сферы 

Мы собираемся показать, что магнитное поле вне равномерно заряженной сферы радиуса a и заряда Q, вращающейся с угловой скоростью ω, точно совпадает с полем магнитного диполя.

Начинаем с векторного потенциала

$$\vec{A}={1\over c}\int\!{\vec{j}\over r}\,dV={Q\over 4\pi ca^2}\int\!{\vec{v}\over r}\,dS={Q\over 4\pi ca^2}\int\!{\vec{\omega}\times a\vec{n}\over r}\,dS,$$

где $$r=|\vec{R}-a\vec{n}|$$ — расстояние от элемента поверхности dS, задаваемого радиус-вектором $$a\vec{n}$$, до точки $$\vec{R}$$, в которой вычисляется векторный потенциал. Учитывая линейность векторного произведения, получаем

$$\vec{A}={Q\over 4\pi ca}\,\vec{\omega}\times\int\!{\vec{n}\over \sqrt{R^2 + a^2-2Ra\cos\chi}}\,dS={Q\over 4\pi ca}\,\vec{\omega}\times\vec{I}.$$

Интеграл $$\vec{I}$$ в последнем выражении — это усреднение единичного вектора $$\vec{n}$$ по направлениям с весом 1/r. Исходя из соображений симметрии ясно, что в результате интегрирования мы получим вектор, параллельный вектору $$\vec{R}$$. Подтвердим это вычислением.

В сферических координатах $$\inline \vec{n}=(\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$$. Направим вектор $$\vec{R}=(0,0,R)$$ вдоль оси z. Тогда угол χ между векторами $$\inline \vec{n}$$ и $$\inline \vec{R}$$ совпадает со сферической координатой θ. Z-компонента интеграла

$$I_z=a^2\int\!\cos\theta\,{1\over \sqrt{R^2 + a^2-2Ra\cos\theta}}\,d(\cos\theta)\,d\varphi.$$

Известно, что функцию 1/r можно разложить по многочленам Лежандра (нас интересует область> a)

$${1\over \sqrt{R^2 + a^2-2Ra\cos\theta}}=\sum\limits_{l=0}^\infty{a^l\over R^{l+1}}P_l(\cos\theta).$$

Подынтегральное выражение состоит из произведения этого ряда на многочлен Лежандра $$P_1(\cos\theta)=\cos\theta$$. Тогда из условия ортогональности

$$\int\limits_{-1}^{1} P_k(x)P_l(x)\,dx={2\over 2k+1}\delta_{kl}$$

сразу следует ответ

$$I_z={4\pi\over 3}{a^3\over R^2}.$$

Компоненты Ix и Iy пропорциональны интегралам от периодических функций sin φ и cos φ, и поэтому равны нулю. Переходя от проекций к вектору, для векторного потенциала получаем

$$\vec{A}={Qa^2\over 3c}\,\vec{\omega}\times{\vec{R}\over R^3}.$$

Таким образом, магнитное поле вне вращающейся сферы совпадает с полем магнитного диполя

$$\vec{\mathfrak{m}}={Qa^2\vec{\omega}\over 3c}.$$(2)

Для полноты отметим, что аналогичными вычислениями легко показать однородность магнитного поля внутри вращающейся сферы.

Электромагнитная масса

Коэффициент в (1) можно переписать по-другому, если ввести понятие электромагнитной массы. Оно подробно разбирается в главе 28 выпуска 6 фейнмановских лекций (ниже мы воспроизводим некоторые вычисления оттуда и фактически на протяжении двух постов разбираем задачу 2 к этой главе).

Вслед за Фейнманом мы будем называть электромагнитной массой коэффициент пропорциональности между скоростью равномерного движения сферы и импульсом электромагнитного поля. В нерелятивистском случае

$$\vec{E}=Q{\vec{R}\over R^3},\quad\vec{H}={Q\over c}{\vec{v}\times\vec{R}\over R^3}.$$

Тогда импульс электромагнитного поля дается интегралом

$$\vec{P}={1\over 4\pi c}\int\!\vec{E}\times\vec{H}\,dV={Q^2\over 4\pi c^2}\int\!{1\over R^4}\,\vec{n}\times\left[\vec{v}\times\vec{n}\right]\,dV.$$

Такой интеграл (с точностью до коэффициента) мы вычисляли в прошлый раз, поэтому сейчас просто выпишем ответ

$$\vec{P}={2Q^2 \over 3 ac^2}\,\vec{v}=m_e \vec{v}.$$

Гиромагнитное отношение и модель электрона

Теперь мы можем переписать (1) в таком виде

$$\vec{L}={m_ec\over Q}\,\vec{\mathfrak{m}}.$$

Мы получили интересный результат: гиромагнитное отношение для вращающейся безмассовой заряженной сферы совпадает с гиромагнитным отношением электрона.

Обычно в литературе по квантовой механике утверждается, что нельзя представлять себе спин электрона как его вращение, так как в такой модели скорость точек на его поверхности будет больше скорости света. Сейчас мы в этом убедимся.

Подставим в (1) магнитный момент (2) и спин электрона ½:

$${\hbar\over 2}={2\over 3}\,{Q\over ca}\,{Qa^2\omega\over 3c},$$

откуда отношение экваториальной скорости к скорости света есть

$${a\omega\over c}={9\over 4}\,{\hbar c\over Q^2}={9\over 4\alpha}\approx308.$$

Несостоятельность простейшей модели электрона проявляется и в том, что полная энергия электрического поля

$$U={1\over 8\pi}\int\!{E^2}\,dV={1\over 8\pi}\int\limits_a^{\infty}{Q^2\over R^4}\,4\pi R^2\,dR={Q^2 \over 2a}={4\over 3}\,m_ec^2$$

отличается от ожидаемой величины mec2.

Ключевые слова: электродинамика

Парадокс Фейнмана, или потоки энергии в постоянных электромагнитных полях Ctrl Магнитные монополи, потоки энергии и квантование заряда

Читайте также

Парадокс Фейнмана, или потоки энергии в постоянных электромагнитных полях
В фейнмановских лекциях по физике (выпуск 6, глава 17) есть описание следующего парадокса.
2011
Магнитные монополи, потоки энергии и квантование заряда
Мы уже рассчитывали замкнутые потоки энергии в стационарных полях зарядов и магнитов. Перейдем к более экзотическому примеру с участием не открытого на опыте магнитного монополя.
2012
Скрытый импульс
Недавно на гиктаймсе писали про невозможный двигатель на электромагнитной тяге. Для появления такой тяги физических оснований нет, обсуждать его мы не будем.
2015

Комментарии

#1. 16 марта 2011 года, 23:00. Михаил Гойхман пишет:
Скажи, Рома, ты что начал преподавательскую деятельность в области общей физики?;)
#2. 16 марта 2011 года, 23:22. пишет:
Нет, я просматривал старые черновики в поисках тем для постов. Заодно кое-что новое посчитал: интеграл с помощью многочленов Лежандра :)

Я могу, кстати, написать еще один пост про задачу из «общей» физики, про брахистохрону под землей (в параболическом потенциале).
#3. 16 марта 2011 года, 23:24. Михаил Гойхман пишет:
Насчет скорости вращения электрона. Помнится на 3-м курсе А. Раевский на лекции по атомной физике (5-й том Сивухина :)) рассказал как Крамерс пришел к Паули обсудить идею спина электрона, после чего Паули довольно быстро указал Крамерсу на то, что такая идея сразу приведет к тому, что скорость на пов-ти электрона будет в $$\sim1/\alpha$$ раз больше скорости света. После чего Паули жутко взбесился, пригрозил Крамерсу, что позвонит Бору и попросит уволить Крамерса за некомпетентность.

Забавно, что имено Паули, а не Гаудсмит и Уленбек получил Нобелевскую премию в соответсвующим вопросе (хотя Паули вне всякого сомнения ее заслужил).
#4. 16 марта 2011 года, 23:27. Михаил Гойхман пишет:
Ха, ну мысль о том, что ты просто оцифровываешь свои записи у меня тоже была :)
#5. 17 марта 2011 года, 01:04. пишет:
Ну а что, записи перед публикацией всё равно нужно перепроверить и навести в них порядок.
#6. 10 марта 2025 года, 10:31. Александр Буринский пишет:
Роман, я тоже кончал Физтех в 1963г.
Тогда только вышла статья Роя Керра о вращающейся черной дыре,
а в 1968 Картер выдвинул идею что это и есть электрон.
Эта статья и близкие идеи Уиллера поддержали идею, что электрон -- это
захваченный на кольцевую орбиту фотон, что затянуло меня очень надолго,
смотри мою статью в УФН 2024 (10), или короткую статью в PEPAN 2023.
Я уже очень стар (85), считать тяжело, но голова полна идей, и мне нужна
Ваша помощь в сотрудничестве, или как минимум, в построении графика (картинки).

Хотел написать Вам письмо, но не нашел Ваш email.
С уважением,
Александр

Оставьте свой комментарий


Формулы на латехе: $$f(x) = x^2-\sqrt{x}$$ превратится в $$f(x) = x^2-\sqrt{x}$$.
Выделение текста: [i]курсивом[/i] или [b]жирным[/b].
Цитату оформляйте так: [q = имя автора]цитата[/q] или [q]еще цитата[/q].
Других команд или HTML-тегов здесь нет.